
A Neurosymbolic Approach To Adaptive Feature Extraction In SLAM

Yasra Chandio
University of Massachusetts Amherst

Setup: EuRoC dataset, KTL Sparse Optical Flow (VINS-Fusion) Extractor Observation: The no. of features tracked depends on the scene and extractor

Idea: Adaptive Feature Extraction in SLAM Pipelines

Key Insight
Different feature extractors suit
different application scenarios.

Dynamically choosing and
configuring extractors can

improve tracking.

Traditional SLAM pipeline
A given feature extractor

component detects & tracks
features over time, typically

with manually tuned
parameters.

Execution: Leverage Neurosymbolic Program Synthesis

θ1

θ2

θN ✘

✘
✔

Fitness Function

SLAM Feature Library

Image
Scene
Info.

SLAM Feature Extractor

Data

Spec (DSL)

Parameter
Adjustment

Program SynthesisFeature
Init

Scene
Info+ Feature

Selector θ2
Remaining

SLAM pose

synthesized program

Key Findings

Evaluation Results
A preliminary implementation of a neurosymbolic
adaptive feature extractor (nFEX) outperforms the
default ORB and SIFT extractors and their dynamic

variants (with parameter adjustment).

Performance Comparison of Different Feature Extractors
(mean absolute trajectory error in meters)

Webpage

Key Takeaway
Leveraging symbolic reasoning and data-driven learning to construct and configure SLAM pipelines improves tracking.

Authors: Yasra Chandio, Momin Ahmed Khan, Khotso Selialia, Luis Antonio Garcia, Joseph DeGol, and Fatima M. Anwar

reflections occlusion low light low texture blurry

Scene Information
& Image

(agent, scene, light, motion)

point

corner

line

Feature
Type

edge

Feature
Vector

Scale-Space
Representation

Keypoint
Detection

Transform
Invariance

Intensity
Centroid

Hessian
Matrix

Harris
Corner

Local Image
Gradient

X, Y Haar
Wavelet

Rotated
BRIEF

Descriptor

Haar
Wavelet

Local Image
Descriptor

ORB
Image

Downsampling
Difference of

Gaussian
blob

Filter
Up-Sampling

SIFT(car, outdoor, bright, fast)

(drone, indoor, dark, slow)

Domain Knowledge Graph
We encapsulate domain insights into the feature extraction
module with a knowledge graph that acts as a database of

domain information that helps understand and navigate the
module's operation and parameters.

Preliminary Analysis: Feature Tracking Performance Across Environmental Conditions

[24] S.-Y. An, J.-G. Kang, L.-K. Lee, and S.-Y. Oh, “Slam with salient
line feature extraction in indoor environments,” in 11th International
Conference on Control Automation Robotics & Vision, 2010.

[25] K.-F. Yang, H. Li, H. Kuang, C.-Y. Li, and Y.-J. Li, “An adaptive
method for image dynamic range adjustment,” IEEE Transactions on
Circuits and systems for video technology, vol. 29, no. 3, 2018.

[26] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive log-
arithmic mapping for displaying high contrast scenes,” in Computer
graphics forum, vol. 22, pp. 419–426, Wiley Online Library, 2003.

[27] M. Hwangbo, J.-S. Kim, and T. Kanade, “Inertial-aided klt feature
tracking for a moving camera,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2009.

[28] Z. Zhu, P. Xiang, and F. Zhang, “Polarization-based method of
highlight removal of high-reflectivity surface,” Optik, vol. 221, 2020.

[29] E. Marconato, S. Teso, A. Vergari, and A. Passerini, “Not all neuro-
symbolic concepts are created equal: Analysis and mitigation of
reasoning shortcuts,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[30] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and
P. Kohli, “Neuro-symbolic program synthesis,” arXiv preprint
arXiv:1611.01855, 2016.

[31] S. Kelly, D. S. Park, X. Song, M. McIntire, P. Nashikkar, R. Guha,
W. Banzhaf, K. Deb, V. N. Boddeti, J. Tan, et al., “Discovering
adaptable symbolic algorithms from scratch,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 3889–3896, IEEE, 2023.

[32] A. Siyaev and G.-S. Jo, “Neuro-symbolic speech understanding in
aircraft maintenance metaverse,” Ieee Access, vol. 9, pp. 154484–
154499, 2021.

[33] T. Chen, Q. Wang, Z. Dong, L. Shen, and X. Peng, “Enhancing
robot program synthesis through environmental context,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[34] S. Chaudhuri and A. Solar-Lezama, “Smooth interpretation,” in Pro-
ceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’10, (New York, NY,
USA), p. 279–291, Association for Computing Machinery, 2010.

[35] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1,
pp. 1997–2017, 2019.

[36] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual-inertial and multi-map SLAM,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[37] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[38] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial vehicle
datasets,” The International Journal of Robotics Research, vol. 35,
no. 10, pp. 1157–1163, 2016.

[39] Y. Chandio, N. Bashir, and F. M. Anwar, “Holoset-a dataset for visual-
inertial pose estimation in extended reality: Dataset,” in Proceedings
of the 20th ACM Conference on Embedded Networked Sensor Systems,
pp. 1014–1019, 2022.

[40] I. Ali and H. Zhang, “Are we ready for robust and resilient slam? a
framework for quantitative characterization of slam datasets,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2810–2816, IEEE, 2022.

[41] S. Guo, Z. Rong, S. Wang, and Y. Wu, “A lidar slam with pca-
based feature extraction and two-stage matching,” IEEE Transactions
on Instrumentation and Measurement, vol. 71, 2022.

[42] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum,
“Neural-symbolic vqa: Disentangling reasoning from vision and lan-
guage understanding,” in Advances in Neural Information Processing
Systems (NeurIPS), vol. 31, Curran Associates, Inc., 2018.

[43] S. S. Saha, S. S. Sandha, M. Aggarwal, B. Wang, L. Han, J. d. G.
Briseno, and M. Srivastava, “Tinyns: Platform-aware neurosymbolic
auto tiny machine learning,” ACM Transactions on Embedded Com-
puting Systems, 2023.

APPENDIX

<DSLProgram> ::= <InputConditions><
,! FeatureExtractionParameters><ParameterAdjustment>
,! <FeatureExtractorSelection>

<InputConditions> ::= <Condition>*
<Condition> ::= <ConditionKey>":"<ConditionValue> ";"

<ConditionKey> ::= "Scene"| .. |"Texture"
<ConditionValue> ::= "Indoor"|"Outdoor"| .. |"High"|"Low"

<FeatureExtractionParameters> ::= <Parameter>*
<Parameter> ::= <ParamKey>":"<ParamValue> ";"
<ParamKey> ::= "NF" | "NL" | "SF" | "ST"
<ParamValue> ::= <Number>

<ParameterAdjustment> ::= "If " <Expression> "{" <
,! ConditionKey>":"<ConditionValue>";" "}"

<Expression>::=<ParamKey>"=="<Number>

<FeatureExtractorSelection>::= Extractor":"<Extractor>";"
<Extractor> ::= "SIFT" | "ORB"

Fig. 5: Grammar to parse the DSL for nFEX.

1 InputConditions {
2 Scene: "Indoor" | "Outdoor";
3 Agent: "Car" | "Human" | "Drone";
4 LightType: "Bright" | "Dark";
5 MotionType: "Fast" | "Slow";
6 reflectiveSurface: "Yes" | "No";
7 texture: "High" | "Low";
8 }
9 FeatureExtractionParameters {

10 NF: Int = 1000;
11 NL: Int = 4;
12 SF: Float = 0.8;
13 ST: Float = 6.0;
14 }
15 ParameterAdjustment {
16 If LightType=="Bright" && MotionType=="Fast":
17 If reflectiveSurface=="Yes" && texture=="High":
18 NF: 338;
19 ElseIf reflectiveSurface=="No" &&

texture=="Low":,!

20 NF: 1200;
21 Else:
22 NF: default;
23 ElseIf LightType=="Dark" && MotionType=="Slow":
24 NF: 800;
25 Else:
26 NF: default;
27 }
28 FeatureFeatureExtractorSelectionMetrics {
29 Metrics:["texturedness", "stability", "motion",

"dissimilarity", "spatialDensity",
"distinctiveness"];

,!

,!

30 }
31 ComputeFeatureExtractorScore {
32 InputImage: Image;
33 Method: "SomeMethod";
34 }
35 FeatureExtractorSelection {
36 If ComputeFeatureExtractorScore["SIFT"] >

ComputeFeatureExtractorScore["ORB"]:,!

37 Extractor: "SIFT";
38 Else:
39 Extractor: "ORB"; // default extractor
40 }

Fig. 6: Example DSL Program.

8

nFEX Overview
An overview of the high-level architecture for our approach,

its components, and how it fits into the SLAM pipeline.

Empirical Data
The distribution of best values on training data for each of the
four parameters we configure. Each point is a parameter value

that gives the lowest error on a given frame.

Output DSL Program
Example DSL Program based
on the knowledge graph and

empirical data.

Visual Odometry
Adaptive

Feature Extraction
Local

& Global
Motion Estimation

Map

Pose

Input Image Data
Preprocessing

Initial Pose
Estimation/

Map Creation

State
Estimation
Correction

Loop Closure

