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Setup: EuRoC dataset, KTL Sparse Optical Flow (VINS-Fusion) Extractor    Observation: The no. of features tracked depends on the scene and extractor

Idea: Adaptive Feature Extraction in SLAM Pipelines

Key Insight
Different feature extractors suit 
different application scenarios. 

Dynamically choosing and 
configuring extractors can 

improve tracking.

Traditional SLAM pipeline
A given feature extractor 

component detects & tracks 
features over time, typically 

with manually tuned 
parameters.

Execution: Leverage Neurosymbolic Program Synthesis
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Key Findings

Evaluation Results
A preliminary implementation of a neurosymbolic 
adaptive feature extractor (nFEX) outperforms the 
default ORB and SIFT extractors and their dynamic 

variants (with parameter adjustment). 

Performance Comparison of Different Feature Extractors 
(mean absolute trajectory error in meters)
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Key Takeaway
Leveraging symbolic reasoning and data-driven learning to construct and configure SLAM pipelines improves tracking.  
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Domain Knowledge Graph
We encapsulate domain insights into the feature extraction 
module with a knowledge graph that acts as a database of 

domain information that helps understand and navigate the 
module's operation and parameters.

Preliminary Analysis: Feature Tracking Performance Across Environmental Conditions
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APPENDIX

<DSLProgram> ::= <InputConditions><
,! FeatureExtractionParameters><ParameterAdjustment>
,! <FeatureExtractorSelection>

<InputConditions> ::= <Condition>*
<Condition> ::= <ConditionKey>":"<ConditionValue> ";"

<ConditionKey> ::= "Scene"| .. |"Texture"
<ConditionValue> ::= "Indoor"|"Outdoor"| .. |"High"|"Low"

<FeatureExtractionParameters> ::= <Parameter>*
<Parameter> ::= <ParamKey>":"<ParamValue> ";"
<ParamKey> ::= "NF" | "NL" | "SF" | "ST"
<ParamValue> ::= <Number>

<ParameterAdjustment> ::= "If " <Expression> "{" <
,! ConditionKey>":"<ConditionValue>";" "}"

<Expression>::=<ParamKey>"=="<Number>

<FeatureExtractorSelection>::= Extractor":"<Extractor>";"
<Extractor> ::= "SIFT" | "ORB"

Fig. 5: Grammar to parse the DSL for nFEX.

1 InputConditions {
2 Scene: "Indoor" | "Outdoor";
3 Agent: "Car" | "Human" | "Drone";
4 LightType: "Bright" | "Dark";
5 MotionType: "Fast" | "Slow";
6 reflectiveSurface: "Yes" | "No";
7 texture: "High" | "Low";
8 }
9 FeatureExtractionParameters {

10 NF: Int = 1000;
11 NL: Int = 4;
12 SF: Float = 0.8;
13 ST: Float = 6.0;
14 }
15 ParameterAdjustment {
16 If LightType=="Bright" && MotionType=="Fast":
17 If reflectiveSurface=="Yes" && texture=="High":
18 NF: 338;
19 ElseIf reflectiveSurface=="No" &&

texture=="Low":,!

20 NF: 1200;
21 Else:
22 NF: default;
23 ElseIf LightType=="Dark" && MotionType=="Slow":
24 NF: 800;
25 Else:
26 NF: default;
27 }
28 FeatureFeatureExtractorSelectionMetrics {
29 Metrics:["texturedness", "stability", "motion",

"dissimilarity", "spatialDensity",
"distinctiveness"];

,!

,!

30 }
31 ComputeFeatureExtractorScore {
32 InputImage: Image;
33 Method: "SomeMethod";
34 }
35 FeatureExtractorSelection {
36 If ComputeFeatureExtractorScore["SIFT"] >

ComputeFeatureExtractorScore["ORB"]:,!

37 Extractor: "SIFT";
38 Else:
39 Extractor: "ORB"; // default extractor
40 }

Fig. 6: Example DSL Program.
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nFEX Overview
An overview of the high-level architecture for our approach, 

its components, and how it fits into the SLAM pipeline.

Empirical Data 
The distribution of best values on training data for each of the 
four parameters we configure. Each point is a parameter value 

that gives the lowest error on a given frame. 

Output DSL Program
Example DSL Program based 
on the knowledge graph and 

empirical data.

Visual Odometry
Adaptive

Feature Extraction
Local 

& Global
Motion Estimation

Map

Pose

Input Image Data
Preprocessing

Initial Pose 
Estimation/

Map Creation

State 
Estimation 
Correction

Loop Closure


