A Neurosymbolic Approach To Adaptive Feature Extraction In SLAM

Authors: Yasra Chandio, Momin Ahmed Khan, Khotso Selialia, Luis Antonio Garcia, Joseph DeGol, and Fatima M. Anwar

Yasra Chandio University of Massachusetts Amherst

Preliminary Analysis: Feature Tracking Performance Across Environmental Conditions

Setup: EuRoC dataset, KTL Sparse Optical Flow (VINS-Fusion) Extractor

Observation: The no. of features tracked depends on the scene and extractor

Idea: Adaptive Feature Extraction in SLAM Pipelines

Traditional SLAM pipeline

A given feature extractor component detects & tracks features over time, typically with manually tuned parameters.

Key Insight

Different feature extractors suit different application scenarios. Dynamically choosing and configuring extractors can improve tracking.

Execution: Leverage Neurosymbolic Program Synthesis

Domain Knowledge Graph

We encapsulate domain insights into the feature extraction module with a knowledge graph that acts as a database of domain information that helps understand and navigate the module's operation and parameters.

Scene: "Indoor" Agent: "Car" | "Human" | "Drone"; reflectiveSurface: texture: "High" | "Low". FeatureExtractionParameters NF: Int = 1000NL: Int = 4; SF: Float = 0.8;ST: Float = 6.0; ParameterAdjustment If LightType=="Bright" && MotionType=="Fast": If reflectiveSurface=="Yes" && texture=="High" NF: 338; ElseIf reflectiveSurface=="No" && \hookrightarrow texture=="Low": NF: 1200; Else: NF: default; ElseIf LightType=="Dark" && MotionType=="Slow": NF: 800; Else: NF: default; FeatureFeatureExtractorSelectionMetrics Metrics:["texturedness", "stability", "motion", $\,\hookrightarrow\,$ "dissimilarity", "spatialDensity"

nFEX Overview

An overview of the high-level architecture for our approach, its components, and how it fits into the SLAM pipeline.

Empirical Data

The distribution of best values on training data for each of the four parameters we configure. Each point is a parameter value that gives the lowest error on a given frame.

ComputeFeatureExtractorScore

InputImage: Image;

empirical data.

Key Findings

Performance Comparison of Different Feature Extractors

(mean absolute trajectory error in meters)

		EuRoC		KITTI		HoloSet	
		MH01	MH05	KITTI-1	KITTI-6	Campus-Center-1	Suburb-Jog-2
ORB	Default	0.855	0.952	2.955	1.173	11.789	11.604
	Dynamic	0.792	0.815	0.565	0.126	5.903	5.845
SIFT	Default	0.860	1.038	fail	fail	13.789	12.825
	Dynamic	0.859	0.882	6.426	5.875	7.049	6.984
nFEX		0.704	0.761	0.565	0.115	4.729	5.800

Evaluation Results

A preliminary implementation of a neurosymbolic adaptive feature extractor (nFEX) outperforms the default ORB and SIFT extractors and their dynamic variants (with parameter adjustment).

Key Takeaway

Leveraging symbolic reasoning and data-driven learning to construct and configure SLAM pipelines improves tracking.