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Supplementary Material

1. Depth and Normal Map Updates

Our approach aims to improve upon the depth and normal
maps generated by ACMP [5] using plane extent inferences
as shown in Algorithm 1. The first step in the algorithm
is to create a depth map for only the detected planes in a
given image, which we’ll refer to as a planes depth map.
For each plane extent inference, we determine the depths
by back-projecting the inferred pixels into the image co-
ordinate space using ray-plane intersections. If a pixel is
inferred as part of multiple planes, we assign it the depth
corresponding to the plane for which it has the highest con-
fidence. As a result, this process yields a depth map where
each pixel has a depth corresponding to one of the detected
planes (or no depth at all). Similarly, we also generate a
planes normal map where each pixel contains the normal
corresponding to the plane for which it has the highest con-
fidence (if any). Furthermore, we also store the highest con-
fidence value for each pixel which yields a planes confi-
dence map.

Next, the planes depth map and the base depth map (gen-
erated by ACMP) are merged using the planes confidence
and counter maps. Our output is a merged depth map and
a depth source map that indicates the source of each depth
in the merged depth map (base depth map or planes depth
map). To determine the depth at each pixel, we need to as-
certain which depth map source (the base depth map or the
planes depth map) is more likely to be accurate. We use the
planes confidence map and the counter map for this task be-
cause the planes confidence map represents the confidence
in depth predictions in the plane depth map, and the counter
map acts as a proxy for confidences in depth prediction of
the base depth map; the larger the count, the more confident
we are in the estimated depths of the base MVS method. To
facilitate comparison between the planes confidence map
and the counter map, we convert the counter map to a base
confidence map based on a straightforward mapping from
counts to confidences. The confidence maps (planes con-
fidence map and base confidence map) are then compared
and a higher value (at a pixel) determines the source of the
depth, thus yielding a merged depth map and a depth source
map.

2. Image Sampling for Low-Shot MVS

To simulate the low-shot scenario for the ETH3D
dataset [4], we generate smaller subsets of scenes using
tracks generated as part of structure from motion (SfM). A
“track” is generated by connecting a set of feature matches
across image pairs and the track length indicates the num-
ber of images that observe the track. The tracks graph is a
bipartite graph where the two sets are represent images and

Algorithm 1: Map Update
Inputs : Base map (depth or normal) M, Counter map N,

Camera Intrinsics K, Plane extent inferences I1 ... In,
Plane parameters P1 ... Pn

1 W,H ←WidthM , HeightM
2 xW×H, yW×H = Grid(W,H) ▷ 2D grid of every pixel
3 ▷ Initialize planes depth and planes confidence maps

DP , CP ← Zeros(W,H)
4 ▷ Determine world-space vectors via back-projection

XW×H, YW×H = Back-project(xW×H, yW×H, K)
5 foreach detected plane pp do
6 ▷ Calculate plane depths using plane-vector intersections

ZW×H = Ppp ∩ (XW×H, YW×H)
7 ▷ Pixels where inference confidence is greater than existing

planes confidence map
xr, yr ← argx,y(Ipp > CP )

8 DP (xr, yr) = Z(xr, yr) ▷ Update planes depth map
9 CP (xr, yr) = Ipp(xr, yr) ▷ Update planes conf. map

10 end
11 ▷ Initialize merged depth and depth source maps

DM , DS ← Zeros(W,H)
12 ▷ Convert counter map to base confidence map (example shown)

CO ←Mapping(N)

CO =

{ 0.50 if count == 0
0.90 if count == 1
0.99 if count == 2
1.00 otherwise

13 ▷ Compare base and planes confidence maps and record source
DS ← maxBase←0;Planes←1(CO, CP )

14 ▷ DM contains depths from source corresponding to the higher
confidence value (at a pixel level)
DM ←M WHERE DS == 0
DM ← DP WHERE DS == 1

Outputs: Merged depth map DM

Depth source map DS

tracks. An edge between the sets indicates observation, i.e.
an image observing a track. To generate smaller subsets, we
recursively remove the most redundant image as indicated
by the tracks graph until the desired low-shot scenario is
achieved. An image is considered the most redundant if it
observes the least number of short tracks, where the shortest
track is observed by two images. Removal of such images
has the least impact on tracks, as tracks with at least two
observations are still generated, which indicates at least two
images view the location of the track.

For the Tanks and Temples [2] test set, we generate a
smaller subset by sampling the video at interval of 1 image
every 10 seconds.

3. Segmentation Network Training Details
We use the DeepLabv3 architecture with a ResNet50 back-
bone pre-trained on the PASCAL VOC [1] classes from the
MS COCO [3] dataset. We use the stochastic gradient de-
scent w/ momentum optimizer with an initial learning rate



30% 60% 90% 100%

I P T(A) T(O) I P T(A) T(O) I P T(A) T(O) I P T(A) T(O)

ETH3D training set 11 23 90 42 21 53 234 85 32 85 409 153 35 94 463 160

Table 1. Average run time and overhead added by our approach for 13 scenes in the ETH3D training set. The results are grouped using
different low-shot scenarios (30%, 60%, 90%, and 100% indicate the percentage of images we used from the original scene). The heading
“I” indicates the average number of images per scene; “P” indicates the average number of detected planes per scene; “T(A)” indicates
the average run time (in seconds) per scene using ACMP; and “T(O)” indicates the average overhead (in seconds) added by our approach.

of 0.001, a momentum value of 0.9, and a weight decay
of 0.0001. We use a step-based decay scheduler where we
systematically drop the learning rate to 95% of its previous
value after every epoch of training.

4. Runtime Performance
To address low-shot MVS, our system detects planes, gen-
erates features for each detected plane, and infers its extent
in each image. Table 1 shows the average runtime of ACMP
and the overhead added by our approach for the scenes in
the ETH3D[4] training set. Our experiments were run on an
Intel Xeon E5-1650 V4 3.6GHz 6-Core machine with 64GB
DDR4-2133 RAM and an NVIDIA Titan X 12GB GPU.
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