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Abstract

Multiview stereo (MVS) systems typically require at least
three views to reconstruct each scene point. This require-
ment increases the burden of image captures and leads to
incomplete reconstructions. Our main idea to address this
low-shot MVS problem is to detect planar surfaces in depth
maps generated by any MVS system and complete these sur-
faces by reformulating the MVS depth prediction task to a
simpler planar surface assignment problem. We use sin-
gle and multi-view cues (when available) and employ the
DeepLabv3 architecture to infer the extent of planar regions
and accurately complete missing surfaces. We show that
our approach reconstructs portions of surfaces viewed by
only one image, yielding denser models than existing MVS
systems.

1. Introduction

Multiview stereo (MVS) involves producing dense recon-
structions from a collection of overlapping images with
known camera intrinsics and extrinsics. The prevalence
of drones, 360 cameras, and camera phones has enabled
widespread use of MVS algorithms to model buildings,
bridges, and cities for inspection and maintenance [1–3].
Currently, MVS algorithms aim to reconstruct portions of
the scene viewed by at least three images (or two mini-
mally), and neighboring photos are recommended to over-
lap in viewed surfaces by 60-80%. In practice, this guide-
line is difficult to follow, especially when taking photos
by hand, and resulting scene models are often incomplete,
which can cause delay and additional cost in critical appli-
cations such as bridge inspection. We introduce the prob-
lem of low-shot MVS, aiming to reconstruct portions of the
scene observed by at least one image.

Incomplete regions are caused by (1) inaccurate and in-
consistent depth estimates on textureless surfaces and (2)
unreliable or rejected depth estimates on surfaces viewed
by too few images. Current state-of-the-art traditional and
deep learning approaches address the first problem explic-
itly [8, 29, 37, 38, 40], but still cannot reconstruct portions
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Figure 1. Insufficiently captured regions generate severely incom-
plete models in current MVS systems (e.g. [39]). In our approach,
we detect planar regions in depth maps and infer their extent, re-
sulting in more complete models.

of scene surfaces viewed by only one image.
Our approach focuses on addressing low-shot MVS, but

also is capable of completing textureless surfaces. The key
idea is that parametric surfaces can be fit to MVS-generated
points in well-viewed portions of the scene, and the para-
metric surfaces can be completed by recognizing to which
surface each pixel belongs. In this paper, we apply this idea
to planar surfaces, which are most common for indoor and
urban scenes, but the idea is applicable to other surfaces
with parametric models, such as cones (e.g. power plant
chimneys) and hyperbaloids (e.g. cooling towers). Our
method is to detect planes and generate features based on
available depth, number of views, and monocular surface
normal prediction and RGB values. Based on these features,
a segmentation model assigns each pixel in each image to
the most likely plane (or no plane), and the corresponding
depth estimates are fused with MVS depth estimates into a
3D model.

Our experiments show that our proposed system leads to
more complete 3D models, while retaining good accuracy
for scenes in the ETH3D [32] and Tanks and Temples [19]
datasets, especially in the low-shot case. To show the ef-
fects of limited overlap in scenes, we evaluate MVS com-
pleteness and accuracy while varying the number of images.
Furthermore, we also improve completeness for textureless
surfaces (where we have a high degree of overlap).

In summary, the contributions of this paper are: (1) an



introduction to the low-shot MVS problem and its impact
on completeness; (2) a system that addresses the low-shot
MVS problem by detecting planar surfaces in reconstructed
portions of the scene and inferring their extents to complete
regions with insufficient views; and (3) experiments that
validate our approach by demonstrating improved F1 scores
for the low-shot and full-shot cases over COLMAP [31] and
ACMP [39] systems on the ETH3D and Tanks and Temples
datasets.

2. Related Work
Shape detection: The detection of primitive shapes is a
well studied problem in computer vision [14, 17, 21, 30].
RANSAC [14], in particular, is robust to outliers and has
proven to be effective in many applications. Schnabel et
al. [30] developed a version called Efficient RANSAC that
detects primitive shapes with a high probability in point
clouds. Sampling minimal sets naively in the presence of
millions of points is infeasible, and they address this is-
sue by employing a localized sampling strategy and scor-
ing scheme with a connectivity measure to limit the number
of minimal sets to a smaller subset thereby increasing the
probability of detecting shapes. Dimitrov et al. [11], alter-
natively, use a user-defined radius to compute multi-scale
features that determine roughness of surfaces. They use a
clustering approach to initialize and grow segments, ensur-
ing that each point in the segment has similar surface rough-
ness. We use a modified version of Efficient RANSAC [30]
to detect planar regions, primarily due to its efficacy and
simplicity. Although we made some small tweaks to the
base algorithm, we claim no novelty in this regard.

Segmentation networks: An essential component of
our approach is to accurately determine full extents of de-
tected planes. To accomplish this task, we formulate extent
prediction as a binary segmentation problem (whether or
not a pixel lies on a detected plane). We limited our review
of existing segmentation literature to approaches adept at
capturing long-range dependencies because the boundaries
of plane extents can appear far (in terms of pixels) compared
to the pixels that detect the planar surfaces. Recently, vision
transformers [12] have been used in semantic segmentation
networks [25, 26, 34, 43] where they have demonstrated the
ability to capture long-range dependencies. However, these
networks require large training sets, which can be difficult
to acquire for 3D modeling. Alternatively, convolutional
architectures use atrous (dilated) convolutions to increase
the filter field of view and capture long-range dependencies.
Unlike transformer-based networks, these architectures do
not require vast amounts of data for training. We adapt the
DeepLabv3 [7] segmentation architecture for our approach,
as it is a state-of-the-art network that uses atrous convolu-
tion.

Plane-informed Multi-view stereo: The use of planar
surfaces in MVS systems has been around for over a decade.
Earlier approaches [15, 16, 33, 35] explicitly detect pla-
nar surfaces to complete textureless surfaces in architectural

scenes. Furukawa et al. [15], under the Manhattan-world
assumption, detect planar surfaces in dominant directions
using histogram binning of normals. They then recover the
depths for textureless surfaces by formulating the problem
as an MRF, which they solve using graph cuts. Sinha et
al. [33] detect salient planes using the sparse point cloud
from structure from motion (SfM) and vanishing point cues.
They formulate the depth recovery problem as a multi-label
MRF, which assigns each pixel to a candidate plane, and
solve it using graph cuts. Gallup et al. [16] present a tech-
nique that detects and segments piecewise planar regions
using image depth maps and segment them using a planar
versus non-planar classifier. They ensure plane consistency
across overlapping views by linking planes using common
reconstructed points.

More recently, PatchMatch-based methods [31, 42] have
gained popularity due to their efficiency and scalability in
reconstructing large scenes. In these methods, depths and
normal maps are estimated by employing PatchMatch [6]
through an iterative series of search and propagation steps.
Romanoni et al. [29] augment the set of hypothesis for
PatchMatch by modelling textureless regions as piecewise
planar surfaces. They accomplish this by segmenting the
image into superpixels and propagate the hypotheses from
superpixels with good inlier ratios to their respective neigh-
bors. Xu et al. [39] propose a planar prior assisted multi-
step PatchMatch framework in which they triangulate points
using sparse correspondences to produce planar models.
The planar models are used alongside photometric consis-
tencies in a probabilistic graphical model to derive matching
costs.

Monocular depth estimation: Monocular depth esti-
mation approaches have shown promise in completing sur-
faces viewed just once. Methods such as [22–24] use plane
priors to reconstruct surfaces from a single RGB image.
While these approaches address the low-shot problem, their
accuracy is significantly lower than that of traditional meth-
ods [31, 39].

Piecewise planar reconstructions: Planar reconstruc-
tion methods such as [5, 9, 27, 28, 36] use a sequence of im-
ages and automatically recover the camera poses along with
a piecewise planar reconstruction. These systems demon-
strate the benefits of detecting and estimating planar sur-
faces but require sequence information and do not address
the low-shot problem.

Sparse view setting: Few methods address the sparsity
of images for reconstruction. The method proposed in [41]
improves reconstructions for different levels of sampling for
scenes in the DTU dataset [4]. Their experiments under
the extreme sparsity setting do not imply a low-shot set-
ting as each region can still be viewed more than two times.
The method proposed in [18] performs planar surface re-
construction from two views with unknown camera poses,
but does not undertake the problem of single-view planar
surface reconstruction.

All the plane-informed MVS methods exploit the pla-
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Figure 2. Our system consists of the four highlighted components. The inputs to our system are images, camera intrinsics and extrin-
sics, depth and normal maps from an existing MVS system, and complete normal maps using single-view prediction from the Omnidata
model [13]. The (1) plane detection and feature generation component detects planar surfaces in the depth maps and generates corre-
sponding counter maps and distance maps. The (2) plane extent segmentation network component infers plane extents for each detected
plane. The (3) map update component uses the plane extent inferences to update the depth and normal maps. The (4) depth map fusion
component fuses the updated depth maps.

narity of surfaces to improve the completeness of scenes,
but their benefits are restricted to textureless (or low-
texture) surfaces. These approaches were not designed for
the low-shot case and thus cannot reconstruct regions with
just one view due their reliance on the minimum number of
views requirement. The monocular depth estimation meth-
ods do address the low-shot case, but cannot take geometry
of the scene into consideration and result in models with
significantly lower accuracy. In contrast, our method im-
proves completeness by addressing the problem of insuf-
ficiently viewed surfaces and yield highly accurate recon-
structions. In our experiments, we show significant im-
provements over ACMP [39], which is a state-of-the-art
method for challenging benchmarks.

3. Method
In our system, we detect planar surfaces in depth maps es-
timated from any MVS system, and generate features such
as normal, counter, and distance maps, which are input into
our plane extent segmentation network (along with the im-
ages) to determine extents of the detected planes. Then, we
update base depth (and normal) maps (from the MVS sys-
tem) using the extent inferences, and perform depth map
fusion. An overview of our system is illustrated in Figure 2.

3.1. Plane Detection
To detect planar regions in depth maps, we employ Effi-
cient RANSAC [30] due to its efficacy and simplicity. This
approach uses a localized sampling strategy and begins by
drawing the first sample, p1, from all points. The remain-
ing samples, p2 to pk, are drawn from the points that are
within a given radius around p1 due to the higher likeli-
hood of them belonging to the same shape. Once sufficient
points are sampled, the model parameters are estimated and
its score is computed. The score of the model consists of
inlier points that are within an ϵ-band around the shape and

whose normals are sufficiently close to the normal of the
shape. To ensure that all inliers belong to the same shape,
the largest connected component of inliers is used. Lastly, a
refitting step is executed with relaxed constraints to remove
unnecessary clutter from the point cloud.

3.2. Feature Generation

Once planar surfaces are detected, we generate normal and
counter maps for each image, and distance maps for each
detected plane in the image. The goal of normal maps is to
help disambiguate surfaces with similar appearances. We
generate the normal maps using the Omnidata [13] surface
normal estimator which is trained with large datasets and
informs our network that is trained on less data.

Counter maps indicate the number of total images that
are depth consistent with a given pixel in the depth map. As
indicated in [20], counter maps are indicative of confidence
of the estimated depth (because higher values gives you
more confidence). Since normal and counter maps are inde-
pendent of planar surfaces, they can be generated in parallel
to plane detection. An example of a counter map is shown
in the first highlighted component in Figure 2. The total
number of views for a region increase as the color changes
from the dark blue (one view) to yellow (5+ views).

Distance maps are dependent on the planar surfaces de-
tected in the depth map, and one is generated for each de-
tected plane. A distance map stores the depth differences
between the depth map and the depth of the detected plane
at each pixel. Distance maps facilitate our plane extent seg-
mentation network to learn the appearance of the detected
plane because small depth differences at pixels signify the
presence of the detected plane. An example of a distance
map is shown in the first highlighted component in Figure 2.
Blue colored regions appear in front of the detected plane,
red colored regions appear behind the detected plane, and
white colored regions appear very close to the plane.



inputs outputs
Distance map Counter map

Encoder

Atrous Conv

1x1 Conv

3x3 Conv
rate 6

3x3 Conv
rate 12

3x3 Conv
rate 18

Image Pooling

1x1 Conv

Decoder

1x1 Conv

Low-Level 
Features

Upsample by 4

Concatenate 3x3 Conv

Upsample by 4

Plane extent inferenceImage Normal map

Plane Extent Segmentation Network Figure

4

Figure 3. Our plane extent segmentation architecture is based on DeepLabv3 [7], which uses atrous convolutions thus enabling larger field
of views for larger context. The inputs to our network are an image, its counter and normal map, and a distance map for a detected plane.
The output is the plane extent inference which represents whether or not a pixel lies on the detected plane.

3.3. Plane Extent Segmentation Network
Our plane extent segmentation network is based on the
DeepLabv3 [7] architecture which employs atrous convo-
lutions to capture long range context. We modify the first
layer to accommodate our 8-channel input which is the con-
catenation of an image, its normal and counter map, and
a distance map corresponding to a single detected plane.
We also modify the last layer for a 1-channel output which
signifies the probability a pixel is on the detected plane.
Semantic segmentation is commonly applied to predefined
classes, but in our case, we do not treat planes as different
classes (i.e. no plane specific parameters are learned). In-
stead, our network deduces the appearance of the plane of
interest from pixels that are close to that plane, according
to distance maps. Figure 3 shows the architecture of our
network.

3.3.1 Training

To train our model, we employ the ScanNet [10] RGB-D
video dataset that consists of over 1500 indoor scenes an-
notated with 3D camera poses and noise-free depth images
captured via a commodity RGB-D sensor. To generate a
dataset suitable for training our network, we generate ex-
amples using approximately 250 scenes from the training
set and sample every 20th image in each scene to limit the
redundancy between examples.

For each training image, we compute depth and counter
maps using ACMP. In training, plane fitting is performed
on ground truth depth maps. Plane segmentation labels are
defined based on the distance of ground truth depth to each
plane. We label a pixel as inlier if the depth difference is
less than 5cm and an outlier if the difference is greater than
10cm. The remaining pixels are ignored in the loss calcula-
tion.

Since our plane extent segmentation network is a binary
classifier (it infers whether a point lies on the plane or not),
we use the binary cross-entropy loss function for training:

Ln = −mn

(
ΣOB

ΣIB+ΣOB
yn log(ŷn) +

ΣIB

ΣIB+ΣOB
(1− yn) log(1− ŷn)

)
. (1)

Ln is the loss for a single pixel, ŷn is the inference pre-

diction, and yn is the ground-truth label (one for inliers and
zero for outliers). mn is zero for ignored pixels, and one
otherwise. ΣIB and ΣOB are the number of inliers and out-
liers in the batch, respectively, and are used to account for
class imbalance.

3.4. Plane Extent Inference Integration
For each pixel, the original depth value is replaced by the
most likely predicted plane if the confidence is greater than
a threshold. The threshold depends on how many images
view the point (as computed in the counter map), since
MVS depth is more reliable and precise with more views. In
tests on ETH3D, the threshold is 0.5 for 1 view (reference
view only), 0.9 for two views, and 0.99 for three views. The
original MVS depth value is always retained if four or more
views agree. See our supplemental material for details. We
use a standard fusion algorithm, except that all 3D points
produced by plane assignments in the updated depth map
are retained, enabling reconstruction of portions of planar
surfaces observed by only one image.

4. Experiments
In Section 4.1, we evaluate the efficacy of our approach
for depth estimation of low-shot (viewed by less than three
images) and textureless (viewed by three or more images)
regions. We evaluate our method for the low-shot MVS
problem in Section 4.2 while showing improvements on
two different MVS systems. Furthermore, we evaluate our
method on the test sets of the ETH3D and Tanks and Tem-
ples datasets in Section 4.3 to show that the benefit of our
approach generalizes to unseen scenes. Lastly, we perform
an ablation study in Section 4.4 to show the impact of each
feature used by our plane extent segmentation network.

Datasets: We perform evaluations on two datasets:
the ETH3D dataset [32] and the Tanks and Temples
dataset [19]. The ETH3D dataset contains a total of 13 in-
door and outdoor scenes mainly featuring urban buildings
composed of planar surfaces while the Tanks and Temples
dataset contains 6 indoor and outdoor scenes composed of
more natural and curved architectural surfaces. We also use
approximately 250 scenes from the ScanNet dataset [10] to
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5Figure 4. This figure depicts the completeness coverage, which
signifies the percentage of depths correctly estimated within a dis-
tance of 5cm, for different depth map sources organized by the
number of total image views. In each group, the first bar is for the
planes depth map, which consists solely of depths estimated from
inferred plane extents; the second bar is for ACMP depth map,
which is the output of the MVS system; the third bar is for our
depth map, in which we updated the ACMP depth map with plane
inferred depths; and the fourth bar is for the oracle depth map,
in which we select at each pixel whichever of Planes or ACMP
depth is closer to the ground truth. Our depth map yields consid-
erably higher coverage for regions viewed only once, while still
outperforming ACMP for two or more total views.

generate our training dataset for our plane extent segmen-
tation network. This dataset is composed of indoor rooms
with varying degrees of clutter and textureless surfaces.

Measures: MVS systems are evaluated using three met-
rics: (1) Accuracy (precision); (2) Completeness (recall);
and (3) F1 score. These metrics are evaluated over a se-
ries of pre-specified distance thresholds, typically ranging
from 0.01 to 0.05. Accuracy measures the percentage of
estimated 3D points that are within a pre-specified distance
of any point in the ground-truth point cloud. Conversely,
completeness measures the percentage of ground-truth 3D
points that are within a pre-specified distance of any point
in the estimated point cloud. The F1 score is the harmonic
mean of accuracy and completeness and yields a single
value that is often used to compare MVS systems.

Base MVS Systems: Our method can operate on depth
and normal maps generated from any MVS system. We
choose the COLMAP (v3.7) [31] MVS system because it
is commonly used and the ACMP [39] MVS system be-
cause it provides highly accurate depth and normal maps
and is considered a state-of-the-art system for these chal-
lenging benchmarks. Except where otherwise noted, we use
default parameters. We perform our experiments and abla-
tion study using depth and normal maps from ACMP, and
use COLMAP to demonstrate general applicability.

Implementation details: We use existing off-the-shelf
implementations for the COLMAP and ACMP MVS sys-
tems. We also use off-the-shelf implementations (and pa-

Overall Results

9Figure 5. Mean F1 scores (y-axis) for the ETH3D dataset as we
vary the percentage of images we use from the original scene (x-
axis). The blue lines show the results for the base systems; a solid
line for ACMP and a dashed line for COLMAP. The green lines
show the results for our system and the line style indicates the
source of the depth map we use for plane detection (and as base
maps); a solid line indicates that we use ACMP depth maps and a
dashed indicates that we use COLMAP depth maps. Our approach
results in higher F1 scores and has the largest impact when the
image overlap is low (low-shot case).

rameters) for algorithms and models we employ in our sys-
tem, such as Efficient RANSAC [30] for planar surface de-
tection and the Omnidata [13] model for surface normal es-
timation. We use the same parameters for all datasets, ex-
cept the confidence thresholds CO used to choose between
plane or MVS depth values, which is set differently for
ETH3D [32] and Tanks and Temples [19], but not tuned for
test sets. The base confidence parameter, CO, represents the
confidence in the base system map (depth or normal) as a
function of total image views. This parameter dictates how
the base depth (and normal) and planes depth (and normal)
maps are merged. For the ETH3D [32] dataset, we set CO

values to 0.50, 0.90, 0.99, and 1.00 for total image views of
1, 2, 3, and 4+, and for the Tanks and Temples [19] dataset,
we set CO values to 0.75, 0.95, and 1.00 for total image
views of 1, 2, and 3+. The chosen CO values for Tanks and
Temples [19] are stricter due to the stricter threshold of 1cm
used in Tanks and Temples [19] evaluation. See supple-
mental for details on training our plane extent segmentation
network.

4.1. Completeness Coverage Analysis
Figure 4 shows our evaluation of how well our approach
completes depth maps for regions with different numbers
of image views. To measure completeness at a depth-
map level, we require dense ground-truth depth maps and
their corresponding counter maps. To obtain this data, we
perform surface reconstruction on the laser-scanned point
cloud and generate dense ground-truth depth maps using
ray-mesh intersections. Lastly, we use the dense ground-



Threshold = 2 cm Threshold = 5 cm

ACMP [39] OURS ACMP [39] OURS

A C F1 A C F1 A C F1 A C F1

Botanical garden 94.91 74.06 83.20 94.28 78.45 85.64 98.40 84.98 91.20 98.00 90.42 94.06
Boulders 84.50 52.37 64.67 86.11 57.59 69.02 93.04 67.14 78.00 94.23 71.73 81.46
Bridge 89.49 78.43 83.60 85.91 80.33 83.03 94.54 89.03 91.70 91.48 91.06 91.27
Door 93.98 85.88 89.75 93.60 87.39 90.39 98.05 93.18 95.55 98.17 94.07 96.07
Exhibition hall 79.68 62.03 69.75 80.16 63.86 71.09 90.45 80.26 85.05 90.72 82.00 86.14
Lecture room 92.09 58.91 71.85 89.13 68.76 77.63 96.31 72.87 82.97 95.30 83.29 88.89
Living room 93.89 81.21 87.09 93.44 89.62 91.49 96.76 88.15 92.25 96.47 95.08 95.77
Lounge 83.80 20.38 32.78 83.82 40.50 54.62 92.91 38.55 54.49 87.94 56.42 68.73
Observatory 93.10 91.15 92.11 90.98 91.72 91.35 98.72 96.26 97.48 96.98 97.55 97.26
Old computer 82.67 60.69 69.99 83.86 69.00 75.71 91.19 76.05 82.93 91.41 83.70 87.39
Statue 98.04 68.18 80.43 95.30 74.25 83.47 99.42 78.05 87.45 97.61 83.42 89.96
Terrace 2 93.64 83.16 88.09 93.60 89.58 91.54 98.32 88.02 92.89 98.30 93.49 95.83
Mean 89.98 68.04 73.11 89.18 74.25 80.41 95.68 79.38 86.00 94.72 85.18 89.40

Table 1. Results for the ETH3D [32] high-resolution multi-view stereo test set. The heading “A” represents accuracy; “C” represents
completness; and “F” represents F1 scores. Bolded results indicate the highest F1 score for a given scene (and threshold).

Sampling Rate = 1 image every 10 secs Sampling Rate = 1 image every sec

ACMP [39] OURS ACMP [39] OURS

A C F1 A C F1 A C F1 A C F1

Auditorium 48.63 2.70 5.11 54.77 7.73 7.89 38.22 22.92 28.66 34.58 26.01 29.69
Ballroom 51.42 10.66 17.66 31.69 17.17 22.28 37.76 60.36 46.46 38.03 67.41 48.62
Courtroom 54.40 4.12 7.66 21.34 6.32 9.75 43.49 35.88 39.32 37.27 41.20 39.14
Museum 66.64 7.06 12.77 34.13 12.39 18.18 47.16 60.45 52.98 41.45 66.13 50.96
Palace 37.90 3.19 5.88 15.32 3.17 5.25 30.84 24.48 27.30 22.74 26.76 24.59
Temple 42.87 3.38 6.26 12.74 3.10 4.98 41.15 37.98 39.50 32.60 42.20 36.78
Mean 50.31 5.18 9.22 28.33 7.73 11.39 39.77 40.35 39.04 34.44 44.95 38.30

Table 2. Results for the Tanks and Temples [19] advanced set. The heading “A” represents accuracy; “C” represents completness; and
“F” represents F1 scores. Bolded results indicate the highest F1 score for a given scene (and interval).

truth depth maps to generate ground-truth counter maps
using the procedure outlined in Section 3.2. Given the
ground-truth data, we calculate distances between the depth
maps from each source and ground-truth depth maps. Then,
we threshold (5cm) the distances and calculate the com-
pleteness coverage for each depth source.

We compare four depth sources: (1) The planes depth
map (green bar); (2) The ACMP depth map (purple bar);
(3) Our depth map (gold bar); and (4) The oracle depth
map (gray bar). The planes depth map consists solely of
depth estimates from inferred plane extents and shows how
much of the scene our inferences alone can complete. The
ACMP depth map is the output of the MVS system and is
our baseline. Our depth map is the result of updating the
ACMP depth map with plane inferred depths, as explained
in Section 3.4. The oracle depth map is similar to our depth
map, except the depth (for each pixel) is selected from the
source closest to the ground-truth. The oracle depth map is
the best-case scenario for completeness coverage and shows
how effective we are at combining inferred depths with the
ACMP depth map. For this evaluation, we use 30% of im-
ages from three scenes (courtyard, delivery area, and elec-
tro) of the ETH3D training set due to the availability of
laser-scanned point clouds that we treat as ground-truth.

Plane inferred depths significantly improve coverage

for regions viewed just once. Figure 4 shows that our
depth maps (gold bar) result in significantly higher com-
pleteness coverage than ACMP depth maps (purple bar)
for regions viewed just once. As expected, ACMP depth
maps are erroneous for these regions because PatchMatch
based methods [31, 39] require at least two image views for
depth estimation. Our depth maps better estimate depths for
these regions because our plane extent segmentation net-
work learns the appearance of a planar surface where to-
tal number of image views is greater than one, and subse-
quently infers a more complete extent for regions viewed
just once.

Plane inferred depths contribute to coverage even for
regions viewed more than once. Figure 4 shows that our
depth maps (gold bar), which contain plane inferred depths,
result in higher completeness coverage for regions that have
two or more views. Despite having a sufficient number of
views for a region, depth estimation can still be erroneous
(or missing) primarily due to lack of texture.

4.2. Low-shot MVS Results
We generate smaller subsets of the ETH3D training set in
order to reduce the overlap between images, thereby simu-
lating the low-shot case (see supplemental material for de-
tails on subset generation). We assume images have suffi-



cient overlap to be correctly registered. Figure 5 shows how
our approach compares to COLMAP [31] and ACMP [39]
MVS systems as we vary the percentage of images used
in each scene on the x-axis and plot the resulting mean F1
scores on the y-axis.

Our approach results in higher F1 scores across two
MVS systems: As shown in Figure 5, our approach, which
uses depth (and normal) maps of a base MVS system, yields
higher F1 scores on the ETH3D [32] dataset over the two
respective base systems [31, 39]. This demonstrates that
our approach is agnostic to the base MVS system.

Our approach has the largest impact for the low-shot
case: Our results demonstrate that for the low-shot case,
which is analogous to low image overlap resulting from low
image subset % (x-axis in Figure 5), the difference between
F1 scores from our approach and the corresponding base
system increases (results are more prominent for ACMP, al-
though we see a similar trend for COLMAP). The increas-
ing difference can be attributed by the completion of larger
missing planar regions by our system as long as sufficient
points exist for detection of the planar region. Our approach
also outperforms both ACMP and COLMAP when all im-
ages from the scenes are used.

4.3. ETH3D and Tanks and Temples Test Results

Our approach outperforms ACMP on the complete im-
age test set of the ETH3D dataset. Table 1 shows the test
set results for the ETH3D [32] dataset for thresholds of 2cm
and 5cm. Our approach yields a higher F1 score compared
to ACMP [39] for 10/12 scenes (for both thresholds) and re-
sults in an overall mean improvements of 10.0% and 4.0%
corresponding to the thresholds of 2cm and 5cm, respec-
tively. For the two scenes where ACMP [39] yields a higher
F1 score, we generate competitive results as our F1 scores
are within 1% of ACMP [39] F1 scores for both thresholds.

Our approach outperforms ACMP on the Tanks and
Temples dataset for the low-shot case, while being com-
petitive when all images are used. Table 2 shows the
advanced test set results for the Tanks and Temples [19]
dataset. In addition to evaluating our approach on the pro-
vided image set, which is generated by extracting an image
every second from the video, we evaluate our approach for
the low-shot case by extracting an image every 10 seconds
thereby reducing the image set and image overlap.

For the low-shot case, our approach yields higher F1
scores for 4/6 scenes when compared to ACMP, resulting
in an average F1 score improvement of 23.5%. For the pro-
vided image set (full-shot case), our method slightly under-
performs ACMP, resulting in an average F1 score decrease
of 1.9%, mainly due to the strict 1cm threshold used in the
dataset evaluation and to architectural features being fre-
quently curved. The curved surfaces, which often appear as
part of large dome-like structures, result in multiple planes
being detected, and the inferred planar extents yield insuffi-
ciently accurate depth values, decreasing precision.

Ablation study (oracle depth maps)

7Figure 6. This figure depicts the impact of each feature on
completeness coverage (percentage of depths correctly estimated
within a distance of 5cm, grouped by the number of total image
views). In each group, we plot the completion coverage for or-
acle depth maps that uses inferred plane extents from networks
trained on (1) All features (“Full”); (2) All features except normal
maps (“-Normal maps”); (3) All features except distance maps (“-
Distance maps”); (4) All features except counter maps (“-Counter
maps”); and (5) All features except RGB images (“-RGB”). We
also plot the completion coverage of ACMP [39] depth maps to
demonstrate the relative impact of each feature. Distance maps
have the biggest impact across all views while counter maps,
normal maps, and RGB images are primarily helpful for regions
viewed only once.

4.4. Ablation Study
In Figure 6, we display results of evaluating the impact
of each feature on completeness coverage, which is the
percentage of depths correctly estimated within a distance
of 5 cm. For this evaluation, we use the data from Sec-
tion 4.1 and plot completeness coverage of oracle depth
maps (in which we select depths from the source closest
to the ground-truth). In using oracle depth maps, we’re able
to isolate the impact of the network features from the map
update step, which merges depth maps (ACMP and planes
depth maps) based on confidences.

We compare our final model (“Full”), which is trained
using all features, to models trained (a) without normal
maps (“-Normal maps”); (b) without distance maps (“-
Distance maps”); (c) without counter maps (“-Counter
maps”); and (d) without RGB images (“-RGB”). We also
depict the completeness coverage of ACMP [39] depth
maps to demonstrate the relative impact of each feature.

Distance maps have the biggest impact. Distance maps
store the depth differences between the depth map and the
depths of the detected plane and signify the region of in-
terest for our segmentation network. Distance maps are
the only indication of which pixels in the image are near
the plane according to MVS estimates, without which the
appearance of the plane is unspecified. As shown in Fig-
ure 6, the completeness coverage of the model without dis-
tance maps is similar to that of the depth maps attained from
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Figure 7. Qualitative results for the ETH3D [32] (top two rows) and Tanks and Temples [19] (bottom two rows) datasets. We state the scene
names and the percentage of images (from the original image set) used for reconstruction as column headings. The ACMP [39] baseline
results are outlined in blue, and our results are outlined in green or red, indicating an increase or drop in performance, respectively,
compared to the baseline.

ACMP [39].

Counter maps are very beneficial for regions viewed
only once. When no source images exist, counter maps
yield more complete depth maps since depth estimates from
the base system (ACMP) are unreliable (for these regions).
As shown in Figure 6, the performance increase for our final
model is close to double (from approximately 17% to 34%)
in the one total image views group (when compared to the
“-Counter maps” configuration).

Normal maps and RGB images have a small positive
impact for regions viewed only once. For regions viewed
only once, no geometric cues exist and our network solely
relies on the learned appearance model for inference. Nor-
mal maps help in disambiguation of surfaces that appear
similar in appearance and we surmise RGB images help for
cases where the inferred normal maps are noisy. As shown
in Figure 6, our final model yields an increase in coverage
of 4% over the models that are not trained with normal maps
and RGB images (“-Normal maps” and “-RGB” configu-
rations).

5. Conclusion
Our method addresses the low-shot MVS problem, improv-
ing completeness of insufficiently viewed portions of the
scene. We accomplish this by detecting planar surfaces in
depth maps, and generate features such as normal, counter,
and distance maps, which are input into our plane extent
segmentation network to determine plane extents. Then, we
update base depth and normal maps from the MVS system
using the inferred extents, and perform depth map fusion.
Results show that our method can use depth maps from any
MVS system and yields improvements on F1 scores for the
low-shot case (when surfaces are only viewed one or two
times) on two different datasets.
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