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Problem Statement

We want to use image and 3D geometry to recognize materials in real-world scenes.
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GeoMat Dataset: Focus Scale

19 Material Multiple Surfaces
Categories per Category 8-12 Images per Surface

Surface Normals
Camera Calibration Information



GeoMat Dataset: Scene Scale |

160 Images of a construction site
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Using Geometry to Aid Material Recognition |

Independent Modeling (N3D)
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Normal Vectors
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Normal Vectors




Using Geometry to Aid Material Recognition |

Frontal Rectification
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Results

3D Geometry helps with categories with similar appearance but different geometry.

Paving Stone - Limestone

Correctly classified with 3D




Results

Both joint (-N) and independent (N3D)
representationsimprove mean EV + CNN 68.92 72 08
classification accuracy.

FV-N + CNN 73.80 73.84
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Results

Both joint (-N) and independent (N3D)
representations improve mean EV + CNN

classification accuracy. EV-N + CNN

Best 2D (FV+CNN)
Best 3D (FV-N+CNN+N3D) FV + CNN

FV-N + CNN




Results |

Both joint (-N) and

representationsimprove mean EV + CNN 68.92 72 08

classification accuracy. FV-N + CNN 73.80 73.84

Best 2D (FV+CNN)

Best 3D (FV-N+CNN+N3D) FV + CNN 72.08

FV-N + CNN 73.80 73.84

Geometry improves classification accuracy
across scales and viewing directions.

Accuracy (%)

100x100 200x200 400x400 800x800

Scale (pixels)
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