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Abstract— In this paper, we demonstrate how automatic
grasp selection can be achieved by placing a camera in the
palm of a prosthetic hand and training a convolutional neural
network on images of objects with corresponding grasp labels.
Our labeled dataset is built from common graspable objects
curated from the ImageNet dataset and from images captured
from our own camera that is placed in the hand. We achieve a
grasp classification accuracy of 93.2% and show through real-
time grasp selection that using a camera to augment current
electromyography controlled prosthetic hands may be useful.

I. INTRODUCTION

This paper presents a prosthetic hand system augmented
with a camera for use in automatic grasp selection (Figure
1). Initial work with grasp selection for prosthetic hands has
used electromyography (EMG) [1]. The grasps most often
classified using EMG include the power grasp, pinch grasp,
tool grasp, 3-jaw chuck, and key grasp, and classification
accuracies between 90-95% have been reported in laboratory
conditions by Kuiken et. al. [2]. However, Castelini et. al. [3]
showed that EMG control is still imperfect because EMG
signals are stochastic and have issues with robustness. These
issues manifest themselves in classification errors when
selecting between multiple grasps in real-world settings.

An alternative to EMG is to use RFID chips as was done
with the Infinite Biomedical Technologies Morph system [4].
However, Morph only works for objects that have been pre-
tagged with RFID chips. Cameras offer another alternative.
Work by Markovic et al. [5] used camera data fused with
EMG for grasp selection, but the user had to wear the
camera on his or her head and the camera was not used to
directly classify appropriate grasps for objects. Our system
investigates how a camera can be embdedded in a prosthetic
hand for grasp selection and does not require object tagging
(e.g. RFID systems) or external sensors (e.g. head camera).

We investigate how to use a camera embedded in a pros-
thetic hand for automatic grasp selection. Images captured
by the camera in the hand are sent to a portable embedded
processor that classifies each image as one of the five grasps
(Kuiken et. al. [2]: power, pinch, tool, 3-jaw chuck, and
key). We also contribute a dataset of annotated image data
that maps close range images of objects to the appropriate
grasp type and demonstrate that our system achieves 93.2%
accuracy in grasp classification. Lastly, we provide snapshots
of grasp classification experiments done in real time and
provide the videos of these experiments on our website1.
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Fig. 1: In this paper, we augment the prosthetic hand of Slade
et. al. [6] by adding a camera in the palm. We then use a
subset of the ImageNet [7] dataset to train a convolutional
neural network [8] to learn grasps. Finally, we validate our
system by achieving 93.2% grasp classification accuracy on
a test set of images captured from our hand camera.

These results are promising for the inclusion of cameras in
future prosthetics and open the door to further investigation
on how a hand camera can be used in conjunction with
electromyography to improve grasp selection.

II. DATASET

In this section, we detail the data we used for testing
automatic grasp selection with our prosthetic hand.

A. DeepGrasping

The DeepGrasping dataset [9] consists of images of ob-
jects on a table. Each image has a resoluton of 640 pixels
x 480 pixels. In total, there are 1035 images of 280 objects.
We augment this dataset by providing annotations for one
of our five possible grasps. We labeled each object based on
which grasp we felt was most natural for that object. If an
object had more than one reasonable grasp choice, we chose
the grasp that would cause a more uniform representation
of grasps. The percentage of each grasp is shown in Table
I. Note that most objects are labeled for power grasp, three
jaw chuck, and pinch grasp. Tool grasp and key grasp are
minimally represented. Because of the bias in this dataset, we
were motivated to create a new dataset that more uniformly
represents each grasp. Figure 2a shows some example images
from the DeepGrasping dataset.



DeepGrasping ImageNet HandCam

Fig. 2: We use three datasets to evaluate our system: Deep Grasping, ImageNet, and HandCam. Because of bias towards
power, pinch, and three jaw chuck in Deep Grasping, we chose to create a dataset from ImageNet that more uniformly
represents all five grasps. We then created the HandCam dataset from images captured by our hand camera to test the
validity of our system.

Grasp DeepGrasping ImageNet HandCam
Key 0.0 % 11.8 % 20.0 %
Pinch 21.8 % 10.6 % 20.0 %
Power 47.0 % 47.5 % 20.0 %
Three Jaw Chuck 28.0 % 19.2 % 20.0 %
Tool 3.2 % 10.9 % 20.0 %

Table I: This table shows the % of each grasp that is
represented in the DeepGrasping, ImageNet, and HandCam
datasets using our annotations. Key grasp and tool grasp
are largely underrepresented in the DeepGrasping dataset so
we created new datasets from ImageNet and our own hand
camera that more uniformly represent each grasp.

B. ImageNet

Because of the lack of representation of key grasp and
tool grasp in the DeepGrasping dataset. We created a new
dataset. First, we downloaded images of common graspable
objects from ImageNet [7] (a common dataset for object
recognition). This data was curated down to 5180 images.
The resolution of the images varies. These images can be
grouped into 25 object categories: Ball, Basket, Blowdryer,
Bowl, Calculator, Camera, Can, Cup, Deodorant, Flashlight,
Glassware, Keys, Lotion, Medicine, Miscellaneous, Mugs,
Paper, Pen, Remote, Scissors, Shears, Shoes, Stapler, Tongs,
and Utensils. The Miscellaneous category contains various
tools such as drills, knives, and hammers. These images
were then annotated with what we felt was the most natural
grasp. If an object had more than one reasonable grasp
choice, we chose the grasp that would cause a more uniform
representation of grasps. The percentage of each grasp is
shown in Table I. Figure 2b shows some example images
from the ImageNet dataset.

C. HandCam Testing Set

The goal is to evaluate how accurately a camera in a
prosthetic hand can identify the appropriate grasp for a given
object. Therefore, we create a third testing dataset consisting
entirely of images captured using the camera in the hand.
Each image has a resolution of 640 pixels x 480 pixels. For

each grasp, ten objects were chosen and were photographed
from five different perspectives. This gives us a total of 50
new objects and 250 test images. Examples are shown in
Figure 2c.

It is worth clarifying that the HandCam dataset is used
purely for testing; this means that the convolutional neural
network (CNN) never trains using any images from the
HandCam dataset. This is interesting because it means that
the CNN does not train with any images captured by the
hand camera. Lastly, note that because we chose ten objects
for each grasp type, we have a uniformly represented test
set; which is desirable for evaluation because a biased dataset
can achieve high classification accuracy by simply weighting
guesses towards the biased category.

III. METHOD

In this section, we describe adding a camera to a prose-
thetic hand and how automatic grasp selection is performed.

A. Adding a Camera to the Prosthetic Hand

We modified the design of [6] to fit our camera. Based
on the dimensions of our camera (a PointGray FireflyMV
USB2.0 [10]) and the space restrictions of the prosthetic
hand, we found it most appropriate to place the camera in
the palm. Our modifications allow the camera to sit in the
palm and face outward towards an intended graspable object
(Shown in Figure 2c). Images captured by the camera are
then sent to an NVIDIA Tegra [11] for processing. The Tegra
is a mobile processor equipped with a GPU which allows for
complex image processing. As stated, the Tegra is a mobile
processor and can, in principle, be equipped with the hand;
making the entire system portable.

B. Automatic Grasp Selection

Convolutional Neural Networks (CNNs) have become the
state-of-the-art method for object recognition in the computer
vision community [8], [12]. These networks operate by tak-
ing an image as input and performing successive operations
on the image such as filtering, max pooling, and rectification.
Each of these operations is referred to as a layer. The network



of [12] (often referred to as VGG-VeryDeep-16 because of
its 16 layers) has become one standard architecture for CNNs
for object recognition. This network has achieved exemplary
results in classifying 1000 objects in the ImageNet dataset
[7].

We use the VGG-VeryDeep-16 architecture for automatic
grasp selection. Specifically, we input images and corre-
sponding grasp labels to the network for training. To get the
network to classify five grasps, we edit the second to last
layer of the network to consider only five possible classes.
We decrease the learning rate of the architecture to properly
tune the network to our new data and altered architecture.
This tuning procedure is standard for training new CNNs.

IV. RESULTS AND DISCUSSION

In this section, we demonstrate the utlity of our automatic
grasp selection method and discuss the features the network
learned for choosing grasps.

A. Grasp Classification Accuracy

Table II shows the classification accuracy of grasps on the
HandCam test set when our CNN was trained using either the
DeepGrasping or ImageNet data described in Section II. It is
not surprising that training with DeepGrasping results in poor
classification results in comparison to ImageNet because
ImageNet consists of thousands of additional images at more
varied perspectives and also contains objects of all five grasp
classes. However, we include the results for training with
DeepGrasping and testing with HandCam for completeness.

Focusing on the results when training with ImageNet and
testing on HandCam, we see that the classification accuracy
is 93.2%. This is a promising result that is on par with state-
of-the-art EMG systems [2].

Table II also shows accuracy for each class. We see that
the pinch grasp achieves the highest classification accuracy
and the tool grasp achieves the lowest classification accuracy.
We suspect that pinch performed the best because the objects
labeled as pinch were often small and numerous (e.g. a
pile of pills) or long and thin (e.g. a pen); which is easily
differentiable from larger, singular objects often associated
with the other grasps (e.g. bowls, bottles, balls, shoes, etc...).

We can see from the confusion matrix in Figure 3 that the
reason tool grasp achieves the lowest accuracy is because
it is often confused with power grasp. This is unsurprising
because one of the key differentiators between tool and
power grasps is the presence of a trigger; which might be
occluded by the body of the object from certain camera
views. For example, spray bottle (which has a trigger) is
an object we labeled as a tool grasp; however, if the camera
views it from certain perspectives, the trigger may be hidden,
making the object look more like an object the network
learned to associate with power grasps.

B. Grasping Objects in Real-Time

Figure 4 provides snapshots of our camera hand sys-
tem successfully identifying the correct grasp type for five
objects. In each case, an object was placed in front of

Testing with Training with Training with
HandCam (%) Deep Grasping ImageNet
Mean Accuracy 19.6 93.2
Key 0.02 92.0
Pinch 0.0 98.0
Power 52.0 94.0
Three Jaw Chuck 44.0 96.0
Tool 0.0 86.0

Table II: Classification accuracies when testing on the
HandCam dataset. The training data is either DeepGrasping
(column 2) or ImageNet (column 3). The per-grasp testing
accuracy is also shown. Mean classification accuracy on the
HandCam testing set is 93.2% when training with ImageNet.

Fig. 3: The confusion matrix shows that the overall accuracy
when training with our ImageNet data and testing on our
HandCam data is 93.2%, which is a promising result that is
on-par with current EMG systems. Note also that the most
confused grasp is tool graps being labeled as power. We
suspect that this confusion arrises because triggers (a defining
feature of tool grasp objects) are occluded by the body of
the object in the confused instances.

the hand and the camera captured an image to classify
the correct grasp (shown in the first column). Then, the
hand was actuated into the correct grasp (columns two
through five). All five grasps are represented, one per row.
The videos that these snapshots were taken from, along
with five additional real-time experiments can be found at
bretl.csl.illinois.edu/prosthetics.

V. CONCLUSIONS

In this paper we augment a prosthetic hand with a camera
and show that our system is a viable option for automatic
grasp selection. Given the stochastic nature of EMG signals,
a hand camera system can be especially useful in resolving
large ambiguity in EMG grasp classification. Moreover,
CNNs have been shown to perform well for classifying
1000 objects, so we expect to achieve high accuracies with
the addition of more grasps (e.g. [13] identifies 24 unique
grasps). With the addition of new grasps however, comes the
ambiguity in choosing between several reasonable grasps for
a given object; perhaps EMG signals can disambiguate these
options. We leave determining the best way to combine EMG
and camera data for grasp selection for future work.



Classified Image Grasp Snapshots

Fig. 4: Snapshots (columns 2 to 5) show automatic grasp selection in real-time using our prosthetic hand with an embedded
camera. Column 1 shows the image that was processed for automatic grasp selection. Each row is a different grasp being
correctly selected for the given object. From top to bottom, the grasps are Key, Pinch, Power, Three Jaw Chuck, and Tool.
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